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Abstract In this paper, we introduce two new flexible families of unimodal circular
distributions obtained by wrapping onto the unit circle two recently explored heavy-
tailed distributions defined on the real line. The first, the four-parameter wrapped
normal-Laplace distribution, is nested within the second, the five-parameter wrapped
generalized normal-Laplace distribution. Both families contain the wrapped normal
and wrapped Laplace and generalized Laplace distributions as special cases. Stochas-
tic models for the genesis of these new distributions, which may be useful in identi-
fying situations in which they are likely to occur, are developed. The basic properties
of the new distributions are derived and model fitting by maximum likelihood dis-
cussed. Examples which illustrate fitting the two distributions to exact and grouped
data are presented.
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1 Introduction

The standard parametric models used in the analysis of circular data, i.e., the von
Mises, cardioid, wrapped normal, and wrapped Cauchy distributions (see Mardia and
Jupp 2000, Sect. 3.5), are all symmetric, despite the fact that directional data sel-
dom exhibit symmetry. In recent years, several new unimodal circular distributions
capable of modeling symmetry as well as asymmetry have been proposed in the liter-
ature. These include the wrapped versions of the skew-normal (Pewsey 2000, 2006);
Laplace (Jammalamadaka and Kozubowski 2003, 2004); and stable (Gatto and Jam-
malamadaka 2003; Pewsey 2008) distributions. An alternative approach to modeling
asymmetric unimodal circular data is to use finite mixtures of symmetric unimodal
circular distributions; see, for example, Fisher (1993, Sect. 4.6); Jammalamadaka and
SenGupta (2001, Sect. 4.3); and Mardia and Jupp (2000, Sect. 5.5). Finite mixtures
with symmetric components can involve relatively large numbers of parameters when
compared with the wrapped skew-symmetric models mentioned above and those that
we propose here. Nevertheless, their interpretation is often simple. Moreover, finite
mixtures with unimodal (symmetric or asymmetric) component distributions can be
used as a means of modeling multimodal circular data.

In this paper we propose two new flexible families of wrapped unimodal distribu-
tions: the four-parameter wrapped normal-Laplace and the five-parameter wrapped
generalized normal-Laplace distributions. Both families of distributions include the
wrapped normal, wrapped Laplace, and wrapped generalized Laplace distributions
and can be used to model asymmetry, varying levels of kurtosis and heavy-tailedness.
In Sect. 2 we define the two distributions and derive them from a simple stochastic
model involving Brownian motion on the circle. This model, which has several vari-
ants, can provide analysts of circular data with a theoretical justification for the use of
these new distributions. Properties of the wrapped generalized normal-Laplace and
wrapped normal-Laplace distributions are presented in Sect. 3. Maximum likelihood
estimation is discussed in Sect. 4, and the two families are fitted to real data and their
fits compared with those of other candidate distributions in Sect. 5. The paper ends,
in Sect. 6, with some concluding remarks.

2 The wrapped normal-Laplace and generalized normal-Laplace
distributions—definitions and genesis

The generalized normal-Laplace (GNL) distribution defined on the real line was
introduced by Reed (2007) and has characteristic function

ey

exp(ins — t2s2/2)T
(1 —ias)(1 +ibs) | °

PGNL(S) = [

where n € R and a, b, ¢, and 72 are non-negative reals (i.e., € 7_3,). We will use
the notation X ~ GNL(n, 2,a,b, ¢) to indicate that the random variable (rv) X has
the above distribution. In general, closed-form expressions for the probability density
and distribution functions of the GNL distribution are not available.
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For the special case when ¢ = 1, the distribution reduces to the (ordinary) normal—
Laplace (NL) distribution for which closed forms for the density and distribution
function have been established (Reed and Jorgensen 2004). The reason for the
name ‘“‘normal-Laplace” is because the distribution arises as that of a convolution
of Gaussian (N(1, t2)) and (skew-) Laplace (with density f(x) = (a + by~ le*/? for
x <0and = (a + b)"le ¥/ for x > 0) components. It occurs when the state of a
Brownian motion (with normally distributed starting state) is observed after an expo-
nentially distributed time (Reed and Jorgensen 2004).

The GNL distribution can be represented as a convolution of independent
Gaussian and generalized Laplace components (Kotz et al. 2001). Since the gen-
eralized Laplace distribution can be represented as the difference between two inde-
pendent gamma rv’s with the same shape parameter, one can represent a GNL rv X

as X 4 n¢ +1/CZ +aVy —bV,, where Z, V| and V; are independent, Z ~ N(0, 1)
and V] and V, are identically distributed gamma rv’s with shape parameter ¢ and
scale parameter 1 (Reed 2007). This representation provides the easiest way to gen-
erate pseudo-random variates from a GNL distribution (and, thus, from its wrapped
version).

The family of GNL distributions is quite rich. It contains, as special cases, the
normal distribution (when a = b = 0); the generalized Laplace distribution (when
n =t = 0); and the (skew-) Laplace distribution (when n =7 =0 and ¢ = 1).

It is clear from (1) that: (i) both the NL and GNL distributions are infinitely di-
visible; (ii) sums of independent NL rv’s with the same a and b will follow a GNL
distribution; (iii) the GNL distribution is closed under summation, in the sense that
sums of independent GNL rv’s with the same a and b will also follow a GNL distri-
bution.

If X ~ GNL(»n, 12,a,b, ¢) then we will say that the circularrv ® = X (mod 27) €
[0, 27r) follows the wrapped generalized normal-Laplace (WGNL) distribution, and
denote this by ® ~ WGNL(#, t2,a, b, ¢). It then follows (Mardia and Jupp 2000,
p. 48) that the characteristic function of ® has complex Fourier coefficients

exp(inp — r2p2/2)r @

P = )= [(1 “iap)(1 +ibp)

for p=0,+1,+£2,....

When ¢ = 1, the distribution of ® is wrapped normal-Laplace (WNL). Using an
obvious notation, we will denote this by & ~ WNL(n, 72, a, b). Given the relation-
ships between the GNL, NL, and normal distributions, clearly WGNL (7, 72,0,0,1) =
WNL(n, 72,0, 0) = WN(n, 1:2), where WN is an abbreviation for ‘wrapped normal’.
Thus, both the WGNL and WNL families contain the wrapped normal distribution as
a special case. The ability of the wrapped normal distribution to closely approximate
the von Mises distribution is discussed at length in Pewsey and Jones (2005). In a
similar fashion, the WNL and WGNL distributions contain the wrapped Laplace
distribution and the wrapped generalized Laplace distributions as special cases
(WGNL(0,0,a,b,1) =WNL(0, 0, a, b) and WGNL(0, 0, a, b, ¢), respectively).

Stephens (1963) showed that the WN distribution can arise as the state of a Brown-
ian motion on the circle after evolving for a fixed length of time. The wrapped ver-
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sions of the ordinary normal-Laplace and the generalized normal-Laplace distrib-
utions have related interpretations, being the state of Brownian motion on the cir-
cle after certain random lengths of time. To see this, consider a particle following a
Brownian motion on the circle with infinitesimal mean drift x d¢, infinitesimal vari-
ance o2 dr and initial direction 6. The direction of the particle at time ¢ has a wrapped
normal distribution, with characteristic function

¢p = elor exp(i/up - (02/2)tp2). 3)

Now suppose that the time for which the Brownian motion has been evolving is a
rv. Specifically, assume that this time, 7', is a constant plus a gamma-distributed rv.
Thus,

d 1
T=t0+XG’ 4)

where 1y is a constant and G has a gamma distribution with unit scale parameter
and shape parameter ¢, i.e., G has pdf fg(x) =x"le /T (¢), where x,¢ > 0.
The characteristic function of the direction of the particle after the random time T
can be found by integrating the characteristic function (3) with respect to the density
Afc(A(t — tg)) over t € (xp, 00). After making the change of variable s =t — #y and
integrating with respect to s over (0, 0o) this yields the characteristic function

A ¢
¢p =exp(i (B0 + pnio)p — (0°/2)t0p%) (x —ipp+ <02/2>p2> ’

which is exactly of the form (2) with

7 It
=M(mod2n), Tt=—,

ACA w\ or u
a = <ﬁ) +ﬁ+ﬁ, b= (ﬁ) +ﬁ—ﬁ.
Thus, the direction of the particle after the random time 7" follows a WGNL distrib-
ution.

We note that an alternative model to (4) for the evolution time of the Brownian
motion, which produces similar results, is when a Brownian motion on the circle with
initial direction following a wrapped normal distribution, WN (10, ag) say, evolves
for a gamma-distributed (or exponentially-distributed) random time. This results in
the same WGNL (or WNL) distribution (with pfo and o2¢ replaced by 1o and og,

respectively).
A number of special cases are of interest:

e ¢ =1, i.e., the random component of the evolution time is exponentially distrib-
uted. In this case the state after time T follows an ordinary WNL distribution.

o 1 =0, i.e., there is no mean drift in the circular Brownian motion. In this case the
WGNL or WNL distribution is symmetric (a =b =0/ V20).
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e 1y = 0. In this case the time T follows a gamma distribution and the state after the
random time T follows the wrapped generalized Laplace distribution (Kotz et al.
2001).

e ¢ =1 and 79 = 0. In this case the state at time T follows a wrapped Laplace distri-
bution.

These representations of the WGNL and WNL distributions may well be useful in
statistical modeling. For example, consider a particle or organism which when created
has a fixed orientation, and then subsequently suffers random perturbations to its
orientation (in a circular random walk or Brownian motion). Suppose this continues
for a fixed time £y and possibly beyond that time until ‘death’ occurs, with hazard rate
A (i.e., the probability of death in an infinitesimal interval of length dr is A df + o(dt)).
At the time of death, the particle’s orientation will follow a WNL distribution. If
instead of a constant hazard rate, A, the hazard rate is that of a gamma distribution,
the resulting distribution of the particle’s orientation at death will be WGNL.

A related process is for a growing population of particles or organisms each of
which has an orientation which evolves randomly over time. More precisely, sup-
pose that the number of particles grows as a homogeneous birth process (i.e., assume
any particle alive at ¢ can give birth to a new particle in (¢, # + df) with probability
A dt + o(dt)) and that when particles are born their orientation follows a wrapped nor-
mal distribution. Assume that subsequent to birth the orientation of a particle evolves
following a circular Brownian motion. As the time since the start of the homoge-
neous birth process tends to infinity, so the distribution of the time in existence of
any randomly chosen particle from the current population tends to an exponential
distribution (this follows from the properties of order statistic processes—see, e.g.,
Reed and Hughes (2007). Thus, the distribution of the orientation of particles over
the whole population will tend to a WNL distribution with a and b related to the
Brownian motion parameters and the birth intensity A; and 1 and 7> the mean and
variance parameters for the wrapped normal distribution of the initial orientation.

3 Properties of WGNL and WNL distributions

As stated in Sect. 2, the rv ® ~ WGNL(#n, 2,a,b, ¢) has a characteristic func-
tion defined by the complex Fourier coefficients ¢, = a) + i, = ¢gnL(p), for
p=0,£1,%2,..., given in (2). The coefficients «, and B, are the pth cosine and
sine moments, respectively, of @, i.e., ap +iB, = E[cos(p®)] + iE[sin(p®)]. The
coefficient ¢, can be represented in polar form as ¢, = p,e*7, where p, € [0, 1] is
known as the pth mean resultant length, and 1), as the pth mean direction. Thus,

op = Pp COS [Lp, Bp = ppsinjip. ®)]

In particular, 1 = 1 is known as the mean direction and p = p1 as the mean resultant
length.
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The probability density function (pdf) of a circular distribution can be represented
in terms of its Fourier coefficients as

1 o0
£(0) = g[1+22{o¢,, cos(p) + B, sin(p@)}:|, (©6)
p=1

or, alternatively, using (5), as

1 o0
fO)= E[HZZWCOS(W—;@)} (7)

p=1

For the special case of the WNL distribution (WGNL with ¢ = 1),

2.2
e~ TP /2 .
ap = 0+ ang)(l T b2p2) [(1 + abpz) cos(np) + (b —a)p sm(np)] — a117’ say,
()
and
e~ P2 . 1
Bp = A1 a2+ b2p?) [(1 +abp®)sin(np) — (b —a)pcos(np)]| =B, say.
©)
For the more general WGNL distribution, one can write
e_fzpz ¢/2 .
- : 10
o [(1 +a?pH(l +b2p2):| cos(¢nu,) (10)
3772172 /2 .
- i , 11
br L1+a%ﬂxL+wp%} sin(eny) (n

where ,u}, is the argument of o }, + iﬂ;. It follows that the pth mean resultant length
of the WGNL distribution is

e—r2p2 ¢/2
— 12
Pr [a+ﬂﬁxuw%%} (12

and the pth mean direction is ), = ¢ u}, (mod 2m). The mean direction, u, is given
by

y
e =C[n+tan_l(f+ﬁ>} (mod 27) (13)

and the circular variance, v, by

efrz ¢/2
”=1—p=1—[m] ' (1
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The circular standard deviation, defined as o = {—2log p}!/?, reduces to o =

{c[t2 + log(1 + a?) + log(1+ bH)1}1/2. Like the variance, it is increasing in ¢, 2 a,
and b.

The pth cosine and sine moments about the mean direction u, ie., ap =
E[cos(p(® — u))] and Ep = E[sin(p(® — w))], can be obtained by replacing n with

tan—1( la-i-_abb) in (8)—(11) above. The coefficients of circular skewness, s, and kurtosis,

k, defined as s = /(1 — p)3/? and k = (@ — p*)/(1 — p)?, then follow directly.
Note that if @ = b, tan™1 ( I“Jr_abb) =0, so that s = 0 and the distribution is symmetric.

To compute the pdf’s of the WNL or WGNL distributions using (6) or (7) one
must approximate their infinite sums in some way. The easiest seems to be to use a
finite sum approximation, using sufficient terms so that the additional contribution
of any omitted term is less than some specified tolerance. We note, from (12), that
pp decreases as p increases. So, in practice, one would continue summing up to the
Nth term if the mean resultant length py was greater than the specified tolerance
value but py41 was not. In practice, with the tolerance level set at 1 x 10712, the
number of terms in the finite series approximation seldom exceeds 100, and is usually
considerably less. The cases requiring the largest number of terms are those for which
0% and ¢ are both small and the resulting pdf extremely peaked.

Figure 1 displays the shape of the WNL distribution (top row) and WGNL dis-
tribution with ¢ = 0.7 (second row). In both rows the left-hand and center panels
show symmetric cases (a = b); for the left-hand panels a = b = 0.1 for various val-
ues of 72, and in the center panels 72 is fixed and a = b varied. The right-hand panel
shows the effect of changing a while b is kept fixed at zero. The second row is the
same as the first except that ¢ is set at 0.7. Note how decreasing ¢ leads to greater
peakedness and thinner flanks. Note also, in the right-hand panels, how a greater dif-
ference between a and b leads to greater skewness and at the same time a flatter
distribution.

4 Maximum likelihood estimation
4.1 Independent exact observations

For a given set of independent exactly observed directions 0T = 01,62, ...,6,)
from the WNGL distribution with parameters (7, tz,a,b, ), one can compute
the log-likelihood numerically to a given level of precision as £(n, 12,a,b, Z) =
Y7, log f(6;) using a finite sum approximation to (6) or (7). If ¢ is set to unity,
the log-likelihood £(n, 2, a, b) of the WNL distribution is produced. Numerical
methods of optimization must then be used to maximize the log-likelihood over
(n,72,a,b) € [0,27) x R to obtain estimates for the WNL distribution; or over
(n,72,a,b,¢) €[0,27) x R* for the WGNL distribution.

However, it is preferable to re-parameterize in terms of other quantities that are
easier to estimate, and so as to avoid some of the high correlations that exist between
the estimates of the original parameters. One possible re-parameterization results
from using the mean direction, i, and mean resultant length, p, given in (13) and (14),
instead of 1 and 2. This simply involves substituting % — tan~ 1 (2=£) (mod 27)

14ab
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Fig. 1 Densities of wrapped normal-Laplace (WNL) (top row) and wrapped generalized normal-Laplace
(WGNL) (bottom row) distributions for various parameter values. In the top row ¢ =1, and in second row
¢ = 0.7. The left-hand panels show the effect of changing the parameter 2, with the other parameters
kept constant (a = b = 0.5 and n = 7). For the three curves (moving downwards) 2= 0,0.25 and 0.5,
respectively. The case 2=0 corresponds to a wrapped Laplace distribution (fop row) and wrapped gen-
eralized Laplace distribution (second row). The center panels show the effect of changing a and b while
keeping them equal. The three curves (moving downward) correspond to a = b = 0 (wrapped normal),
a=b=0.5and 1.0 (with n =7, 2= 0.1). Note how increasing a and b has the effect of flattening the
distribution. The right-hand panels show the effect of increasing the difference between a and b. The three
curves (moving downwards) correspond to a = 1,b=0,a=5,b=0 and a = 10,5 =0 (with n = 7,
2= 0.1). Note how the skewness and flatness of the distributions increase with the increased difference
between a and b. In comparing the top row (¢ = 1) and bottom row (¢ = 0.7) note how the smaller value
of ¢ leads to taller peaks and thinner flanks, and also a move to the left of the mode

and —% log p — log(1 + a?) — log(1 + b?) for n and 2, respectively, in the log-
likelihood function. To accommodate the fact that u is a circular variable, one can
replace it by u* € R in the log-likelihood and then maximize over (u*, p,a, b,¢) €
R x [0, 1] x R2.. The MLE of u, fi, is then given by &* (mod 27). The numerical
optimization can be performed using standard routines such as those in optim in the R
stats package, or the S-Plus routine niminb. We have found the Nelder—-Mead simplex
algorithm (the default in optim) to be very dependable for this problem. Nevertheless,
many other approaches are available which could be used to carry out the numerical
optimization.
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Before fitting the five-parameter WGNL distribution, we suggest firstly fitting the
four-parameter WNL distribution, using the sample mean direction, #, and sample
mean resultant length, R, as starting values for 1 and p, and arbitrary starting values
for a and b. Indeed to accommodate the possibility of multiple local maxima, we
recommend the use of a variety of starting values for a and b. Following this, the five-
parameter WGNL distribution can be fitted using the maximum likelihood estimates
(MLE’s) of wu,p,a and b for the fitted WNL distribution, and ¢{ = 1, as starting
values.

Asymptotic standard errors and correlation coefficients for the MLE’s of u, p, a, b,
and ¢ can be obtained in the usual way from the observed information matrix. The
latter can be calculated using the inverse of the Hessian matrix (produced by optim
when the option “hessian = TRUE” is specified) evaluated at the maximum.

4.2 Grouped data

If the data consist of independent observations grouped into N cells given by the
half-open intervals [0, 61)), [0(1), 02)), - .., [B(n—1), 27r) with observed frequencies
f1, f2, ..., fn, the log-likelihood is of multinomial form £ = 27: 1 fjlog¢;, where
¢;j =F(6) — F(6-1)) and F is the cumulative distribution function (cdf) of the
WGNL distribution. The latter is given by

1

FO)= 7 [9 +2)° %”{sm[p(e — 1) — pp] +sin[pn + Mp]}},
p=1

and can be computed to any given tolerance level using a finite sum approximation
in the same way as described above for computing the pdf, f(9). Again, it proves
worthwhile to re-parameterize as described in Sect. 4.1 and then maximize the log-
likelihood over the transformed parameters.

5 Examples
5.1 Exact observations

As an example of independent exact observations we use the data, reported in Brud-
erer and Jenni (1990), of n = 1827 flight headings, a “heading” being the direction
of a bird’s body measured clockwise from north. A histogram of the headings is
presented in Fig. 2. The large-sample test of Pewsey (2002) emphatically rejects un-
derlying reflective symmetry, with a p-value of 0.000. The sample mean direction
and mean resultant length are 6 = 3.923 (radians) and R = 0.737, respectively.

Pewsey (2008) fitted several parametric models to these data: the wrapped stable
distribution, a two component mixture of von Mises distributions, and a mixture with
circular uniform and wrapped skew-normal components. Here we fit the WNL and
WGNL distributions and compare their fits with those obtained by Pewsey.

Fitting the four-parameter WNL distribution using the (u, p, a, b) parameter-
ization, § = 3.923 and R = 0.737 as starting values for x and p and 1 as the
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Fig. 2 Histogram of 1827
bird-flight “headings” (direction © .
measured clockwise from north, S @
in radians) of migrating birds. \
Also shown are the densities of g _
the maximum likelihood fits for
the WGNL (solid line) and <
wrapped stable (broken line) . ° ]
distributions 3
S o
[0} )
hel o
N
o
S -
e |
o
T T T T T T T
0 1 2 3 4 5 6
heading

starting value for both a and b, leads to the MLE’s ot = 3.913 (0.0177), p =
0.734 (0.0091), a = 0.369 (0.0319), b =0.696 (0.0326), with a log-likelihood of
—2137.08. The figures in brackets are asymptotic standard errors computed from the
observed information matrix. The asymptotic correlations between the estimates are
all quite small except for that between p and b (—0.73). The Pearson chi-square
goodness-of-fit statistic, calculated using 18 class intervals each of width 20 degrees,
has a value of 30.56 on 13 degrees of freedom (p-value = 0.004), indicating an inad-
equate fit.

Next, fitting the WGNL distribution using the (u, p, a, b, {) parameterization and
the MLE’s for the WNL fit and ¢ = 1 as starting values, leads to the MLE’s i =
3.921 (0.0172), p =0.736 (0.0095), G = 0.487 (0.1849), b =2.200 (1.2080), # =
0.166 (0.0913). All the asymptotic correlations involving ft and o are small. Those
between d, b and ¢ are larger, with that between b and ¢ being particularly strong
and negative (—0.98). The value of the log-likelihood for this fit is —2129.83 and
the Pearson chi-square goodness-of-fit statistic has a value of 13.40 on 12 degrees of
freedom (p-value = 0.341). This suggests a very good fit, particularly considering
the sample size involved.

For these data, the fit of the WGNL distribution is not as good (as measured by
maximized log-likelihood) as that of the four-parameter wrapped stable distribution
(max £ = —2127.73), nor that of a four-parameter mixture with circular uniform and
skew-normal components (max £ = —2128.03). However it is better than the fit of
a five-parameter mixture of two von Mises distributions (max £ = —2130.10) (see
Pewsey 2008). Given these log-likelihood results and the number of parameters of
the various models, the wrapped stable distribution would be identified as the superior
model using any of the standard information criteria such as AIC, BIC, etc. The pdf
of the WGNL fit is shown superimposed on the histogram of the data, together with
the density of the wrapped stable fit, in Fig. 2.

Computing time was not found to be a major concern. Using the R routine optim
with the tolerance for computing the pdf using a finite sum (Sect. 3) set at 1 x 10712,
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Fig. 3 Histogram of the
“vanishing angles” of 714
mallard ducks (grouped in
twenty degree segments). Also
shown are the densities of the
maximum likelihood fits for the
WNL (broken line) and
symmetric WNL (solid line)
distributions

density

0.000 0.002 0.004 0.006 0.008 0.010 0.012
1

0 50 100 150 200 250 300 350

vanishing angle - degrees

about two minutes of computing time on a desktop PC with a 2.66 GHz processor
was required to obtain the MLEs for the five-parameter WGNL model.

5.2 Grouped data

As an example of fitting our new models to grouped data, we consider the data on
the 714 vanishing angles of mallard ducks presented in Mardia and Jupp (2000,
p. 3; histogram, p. 4). The MLE’s for the four-parameter WNL distribution, using
the (u, p, a, b) parameterization, are it = 5.486 (0.0290), p =0.722 (0.0154), a =
0.651 (0.0484), b =0.532 (0.0453), with a log-likelihood value of —1618.96. The
largest asymptotic correlation between the MLE’s is that between 6 and a (0.62). For
these data § = 5.481 (radians) and R = 0.726, which agree closely with the MLE’s
i and p for the WNL fit. The Pearson chi-square goodness-of-fit statistic has a value
of 20.49 on 13 degrees of freedom (p-value = 0.084).

Fitting the five-parameter WGNL distribution leads to a maximized log-likelihood
of —1617.99, with convergence being obtained in under a minute. There appears to
be some ‘flatness’ of the log-likelihood around the maximum, since different start-
ing values lead to convergence to different points, but all with similar log-likelihood
values. Furthermore the likelihood ratio test of { = 1, using the usual asymptotic chi-
square approximation, leads to a p-value of 0.16. This suggests that the WGNL is an
over-parameterized model for these data and that the WNL distribution provides an
adequate fit.

Given the similarity of the estimates for a and b (when considered together with
their asymptotic standard errors) it is of interest to investigate the hypothesis of an
underlying symmetric WNL population (i.e., with a = b). Fitting such a distribution
to these data results in the estimates 1 = 5.474 (0.0281), 0 =0.759 (0.0260), a =
b =0.593 (0.0290), and a log-likelihood value of —1620.25. All of the asymptotic
correlations between the estimates are small except that between p and a (0.86). The
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likelihood ratio test of @ = b has a p-value of 0.108. This compares with a p-value of
0.124 for the large-sample test of underlying reflective symmetry of Pewsey (2002)
(without any allowance for grouping). These results provide support for the hypoth-
esis of underlying symmetry, and indicate that the most parsimonious fit for these
data is that of the symmetric WNL distribution. However, the Pearson chi-square
goodness-of-fit statistic for this model is 22.55 on 14 degrees of freedom (p-value =
0.068), suggesting a barely adequate fit. The ambiguity as to which of the 4-parameter
WNL model or the 3-parameter symmetric WNL model is superior, is reflected in
the AIC values (3245.92 and 3246.50) and the BIC values (3264.20 and 3260.21)
for the two models. The more stringent BIC criterion supports the superiority of the
symmetric WNL model whereas AIC identifies the four-parameter WNL model as
being marginally better. The pdf’s of the maximum likelihood fits for the WNL and
symmetric WNL distributions are shown superimposed on the histogram of the data
in Fig. 3.

6 Conclusions

In this article we have introduced two new families of unimodal circular distributions
obtained by wrapping the normal-Laplace and generalized normal-Laplace distribu-
tions onto the unit circle. In Sect. 2, a simple stochastic model which can lead to the
WNL and WGNL distributions was outlined. One version of this involves a growing
population of objects each of which has a property of orientation (corresponding to
an angle between 0 and 2 radians) which evolves in a random way. Under certain
assumptions, it can be shown that the distribution of orientations over the population
after a long time has passed should be approximately WNL. The assumptions are
that: (i) the population grows exponentially (in expectation) as a homogeneous birth
process; (ii) when new objects are born their initial orientation follows a wrapped
normal distribution; (iii) from birth onwards, orientations of objects evolve indepen-
dently as Brownian motion on the circle. Whether this construction will prove useful
in physics, biology, or any other area of application remains to be seen. We, never-
theless, hope that the two new families of distributions will find use as models for
circular data, whether produced by this or a related process or otherwise, that the
existing distributions proposed in the literature are incapable of modeling.
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